归子莫的博客

「笔杆揭不起,绘不出青烟别春泥 ————归子莫」

数据结构–图(深度优先遍历和广度优先遍历)(Java)

博客说明

文章所涉及的资料来自互联网整理和个人总结,意在于个人学习和经验汇总,如有什么地方侵权,请联系本人删除,谢谢!

图的常用概念

图是一种数据结构,其中结点可以具有零个或多个相邻元素。两个结点之间的连接称为边。 结点也可以称为顶点。

  • 顶点(vertex)
  • 边(edge)
  • 路径
  • 无向图

image-20200904124205865

  • 有向图

image-20200904124318805

  • 带权图

image-20200904124332489

图的表示方式

图的表示方式有两种:二维数组表示(邻接矩阵);链表表示(邻接表)。

邻接矩阵

邻接矩阵是表示图形中顶点之间相邻关系的矩阵,对于n个顶点的图而言,矩阵是的row和col表示的是1….n个点。

image-20200904124501028

邻接表

邻接矩阵需要为每个顶点都分配n个边的空间,其实有很多边都是不存在,会造成空间的一定损失

邻接表的实现只关心存在的边,不关心不存在的边。因此没有空间浪费,邻接表由数组+链表组成

image-20200904124627030

代码实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
package com.guizimo;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.LinkedList;

public class Graph {

private ArrayList<String> vertexList;
private int[][] edges;
private int numOfEdges;
private boolean[] isVisited;

public static void main(String[] args) {

int n = 8;
String Vertexs[] = {"1", "2", "3", "4", "5", "6", "7", "8"};
Graph graph = new Graph(n);
for(String vertex: Vertexs) {
graph.insertVertex(vertex);
}

//插入图的节点
graph.insertEdge(0, 1, 1);
graph.insertEdge(0, 2, 1);
graph.insertEdge(1, 3, 1);
graph.insertEdge(1, 4, 1);
graph.insertEdge(3, 7, 1);
graph.insertEdge(4, 7, 1);
graph.insertEdge(2, 5, 1);
graph.insertEdge(2, 6, 1);
graph.insertEdge(5, 6, 1);

//遍历图
graph.showGraph();

System.out.println("广度优先遍历
graph.dfs();
System.out.println("深度优先遍历
graph.bfs();

}

public Graph(int n) {
edges = new int[n][n];
vertexList = new ArrayList<String>(n);
numOfEdges = 0;
}


public int getFirstNeighbor(int index) {
for(int j = 0; j < vertexList.size(); j++) {
if(edges[index][j] > 0) {
return j;
}
}
return -1;
}

public int getNextNeighbor(int v1, int v2) {
for(int j = v2 + 1; j < vertexList.size(); j++) {
if(edges[v1][j] > 0) {
return j;
}
}
return -1;
}

//深度优先遍历
private void dfs(boolean[] isVisited, int i) {
System.out.print(getValueByIndex(i) + "->");
isVisited[i] = true;
int w = getFirstNeighbor(i);
while(w != -1) {
if(!isVisited[w]) {
dfs(isVisited, w);
}
w = getNextNeighbor(i, w);
}

}

public void dfs() {
isVisited = new boolean[vertexList.size()];
for(int i = 0; i < getNumOfVertex(); i++) {
if(!isVisited[i]) {
dfs(isVisited, i);
}
}
}

//广度优先遍历
private void bfs(boolean[] isVisited, int i) {
int u ;
int w ;
LinkedList queue = new LinkedList();
System.out.print(getValueByIndex(i) + "=>");
isVisited[i] = true;
queue.addLast(i);

while( !queue.isEmpty()) {
u = (Integer)queue.removeFirst();
w = getFirstNeighbor(u);
while(w != -1) {
if(!isVisited[w]) {
System.out.print(getValueByIndex(w) + "=>");
isVisited[w] = true;
queue.addLast(w);
}
w = getNextNeighbor(u, w);
}
}

}

public void bfs() {
isVisited = new boolean[vertexList.size()];
for(int i = 0; i < getNumOfVertex(); i++) {
if(!isVisited[i]) {
bfs(isVisited, i);
}
}
}

public int getNumOfVertex() {
return vertexList.size();
}

//遍历
public void showGraph() {
for(int[] link : edges) {
System.err.println(Arrays.toString(link));
}
}

public int getNumOfEdges() {
return numOfEdges;
}

public String getValueByIndex(int i) {
return vertexList.get(i);
}

public int getWeight(int v1, int v2) {
return edges[v1][v2];
}

//添加邻接矩阵
public void insertVertex(String vertex) {
vertexList.add(vertex);
}

//插入权值
public void insertEdge(int v1, int v2, int weight) {
edges[v1][v2] = weight;
edges[v2][v1] = weight;
numOfEdges++;
}
}

深度优先遍历,从初始访问结点出发,初始访问结点可能有多个邻接结点,深度优先遍历的策略就是首先访问第一个邻接结点,然后再以这个被访问的邻接结点作为初始结点,访问它的第一个邻接结点, 可以这样理解:每次都在访问完当前结点后首先访问当前结点的第一个邻接结点

算法
  • 访问初始结点v,并标记结点v为已访问。
  • 查找结点v的第一个邻接结点w。
  • 若w存在,则继续执行4,如果w不存在,则回到第1步,将从v的下一个结点继续。
  • 若w未被访问,对w进行深度优先遍历递归(即把w当做另一个v,然后进行步骤123)。
  • 查找结点v的w邻接结点的下一个邻接结点,转到步骤3
代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
//深度优先遍历
private void dfs(boolean[] isVisited, int i) {
System.out.print(getValueByIndex(i) + "->");
isVisited[i] = true;
int w = getFirstNeighbor(i);
while(w != -1) {
if(!isVisited[w]) {
dfs(isVisited, w);
}
w = getNextNeighbor(i, w);
}

}

public void dfs() {
isVisited = new boolean[vertexList.size()];
for(int i = 0; i < getNumOfVertex(); i++) {
if(!isVisited[i]) {
dfs(isVisited, i);
}
}
}

类似于一个分层搜索的过程,广度优先遍历需要使用一个队列以保持访问过的结点的顺序,以便按这个顺序来访问这些结点的邻接结点

算法
  • 访问初始结点v并标记结点v为已访问。
  • 结点v入队列
  • 当队列非空时,继续执行,否则算法结束。
  • 出队列,取得队头结点u。
  • 查找结点u的第一个邻接结点w。
  • 若结点u的邻接结点w不存在,则转到步骤3;否则循环执行以下三个步骤:
    • 若结点w尚未被访问,则访问结点w并标记为已访问。
    • 结点w入队列
    • 查找结点u的继w邻接结点后的下一个邻接结点w,转到步骤6
代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
//广度优先遍历
private void bfs(boolean[] isVisited, int i) {
int u ;
int w ;
LinkedList queue = new LinkedList();
System.out.print(getValueByIndex(i) + "=>");
isVisited[i] = true;
queue.addLast(i);

while( !queue.isEmpty()) {
u = (Integer)queue.removeFirst();
w = getFirstNeighbor(u);
while(w != -1) {
if(!isVisited[w]) {
System.out.print(getValueByIndex(w) + "=>");
isVisited[w] = true;
queue.addLast(w);
}
w = getNextNeighbor(u, w);
}
}

}

public void bfs() {
isVisited = new boolean[vertexList.size()];
for(int i = 0; i < getNumOfVertex(); i++) {
if(!isVisited[i]) {
bfs(isVisited, i);
}
}
}

感谢

尚硅谷

以及勤劳的自己,个人博客GitHub

微信公众号

评论