归子莫的博客

「笔杆揭不起,绘不出青烟别春泥 ————归子莫」

数据结构—平衡二叉树(Java)

博客说明

文章所涉及的资料来自互联网整理和个人总结,意在于个人学习和经验汇总,如有什么地方侵权,请联系本人删除,谢谢!

说明

平衡二叉树也叫平衡二叉搜索树(Self-balancing binary search tree)又被称为AVL树, 可以保证查询效率较高。
具有以下特点:它是一 棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。平衡二叉树的常用实现方法有红黑树、AVL、替罪羊树、Treap、伸展树等。

代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
package cn.guizimo.avl;

public class AVLTree {
public static void main(String[] args) {
int[] arr = { 10, 11, 7, 6, 8, 9 };
AVLTreeDemo avlTree = new AVLTreeDemo();
for(int i=0; i < arr.length; i++) {
avlTree.add(new Node(arr[i]));
}

System.out.println("中序遍历");
avlTree.infixOrder();

System.out.println("平衡");
System.out.println("树的高度:" + avlTree.getRoot().height()); //3
System.out.println("左子树高度:" + avlTree.getRoot().leftHeight()); // 2
System.out.println("右子树高度" + avlTree.getRoot().rightHeight()); // 2
System.out.println("根节点:" + avlTree.getRoot());//8
}
}

class AVLTreeDemo{
private Node root;

public Node getRoot() {
return root;
}

//查找当前节点
public Node search(int value) {
if (root == null) {
return null;
} else {
return root.search(value);
}
}

//找到最小值
public int delRightTreeMin(Node node) {
Node target = node;
while(target.left != null) {
target = target.left;
}
delNode(target.value);
return target.value;
}

//删除节点
public void delNode(int value) {
if (root == null) {
return;
} else {
//删除叶子节点
Node targetNode = search(value);
if (targetNode == null) {
return;
}
if (root.left == null && root.right == null) {
root = null;
return;
}
Node parent = searchParent(value);
if (targetNode.left == null && targetNode.right == null) {
if (parent.left != null && parent.left.value == value) {
parent.left = null;
} else if (parent.right != null && parent.right.value == value) {
parent.right = null;
}
//删除两颗子树的节点
} else if (targetNode.left != null && targetNode.right != null) {
int i = delRightTreeMin(targetNode.right);
targetNode.value = i;
//删除一颗子树的节点
} else {
if (targetNode.left != null) {
if (parent != null) {
if (parent.left.value == value) {
parent.left = targetNode.left;
} else {
parent.right = targetNode.right;
}
} else {
root = targetNode.left;
}
} else {
if (parent != null) {
if (parent.left.value == value) {
parent.left = targetNode.right;
} else if (parent.right.value == value) {
parent.right = targetNode.right;
}
} else {
root = targetNode.right;
}
}
}
}
}

//查询当前节点的父节点
public Node searchParent(int value) {
if (root == null) {
return null;
} else {
return root.searchParent(value);
}
}

//添加节点
public void add(Node node) {
if (root == null) {
root = node;
} else {
root.add(node);
}
}

//中序遍历
public void infixOrder() {
if (root != null) {
root.infixOrder();
} else {
System.out.println("");
}
}
}

class Node {
int value;
Node left;
Node right;

public Node(int value) {
this.value = value;
}

//左子树的高度
public int leftHeight() {
if (left == null) {
return 0;
}
return left.height();
}

// 右子树的高度
public int rightHeight() {
if (right == null) {
return 0;
}
return right.height();
}

// 当前节点的高度
public int height() {
return Math.max(left == null ? 0 : left.height(), right == null ? 0 : right.height()) + 1;
}

@Override
public String toString() {
return "Node{" +
"value=" + value +
'}';
}

//查找节点
public Node search(int value) {
if (value == this.value) {
return this;
} else if (value < this.value) {
if (this.left == null) {
return null;
}
return this.left.search(value);
} else {
if (this.right == null) {
return null;
}
return this.right.search(value);
}
}

//查询父节点
public Node searchParent(int value) {
if ((this.left != null && this.left.value == value) ||
(this.right != null && this.right.value == value)) {
return this;
} else {
if (value < this.value && this.left != null) {
return this.left.searchParent(value);
} else if (value >= this.value && this.right != null) {
return this.right.searchParent(value);
} else {
return null;
}
}
}

//添加节点
public void add(Node node) {
if (node == null) {
return;
}
if (node.value < this.value) {
if (this.left == null) {
this.left = node;
} else {
this.left.add(node);
}
} else {
if (this.right == null) {
this.right = node;
} else {
this.right.add(node);
}
}

//左旋转
if(rightHeight() - leftHeight() > 1) {
if(right != null && right.leftHeight() > right.rightHeight()) {
right.rightRotate();
leftRotate();
} else {
leftRotate();
}
return ;
}

//右旋转
if(leftHeight() - rightHeight() > 1) {
if(left != null && left.rightHeight() > left.leftHeight()) {
left.leftRotate();
rightRotate();
} else {
rightRotate();
}
}
}

//中序遍历
public void infixOrder() {
if (this.left != null) {
this.left.infixOrder();
}
System.out.println(this);
if (this.right != null) {
this.right.infixOrder();
}
}

//左旋转
private void leftRotate() {
Node newNode = new Node(value);
newNode.left = left;
newNode.right = right.left;
value = right.value;
right = right.right;
left = newNode;
}

//右旋转
private void rightRotate() {
Node newNode = new Node(value);
newNode.right = right;
newNode.left = left.right;
value = left.value;
left = left.left;
right = newNode;
}

}

测试

image-20200828225719470

感谢

尚硅谷

以及勤劳的自己

评论