数据结构—平衡二叉树(Java)
博客说明
文章所涉及的资料来自互联网整理和个人总结,意在于个人学习和经验汇总,如有什么地方侵权,请联系本人删除,谢谢!
说明
平衡二叉树也叫平衡二叉搜索树(Self-balancing binary search tree)又被称为AVL树, 可以保证查询效率较高。
具有以下特点:它是一 棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。平衡二叉树的常用实现方法有红黑树、AVL、替罪羊树、Treap、伸展树等。
代码
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
| package cn.guizimo.avl;
public class AVLTree { public static void main(String[] args) { int[] arr = { 10, 11, 7, 6, 8, 9 }; AVLTreeDemo avlTree = new AVLTreeDemo(); for(int i=0; i < arr.length; i++) { avlTree.add(new Node(arr[i])); }
System.out.println("中序遍历"); avlTree.infixOrder();
System.out.println("平衡"); System.out.println("树的高度:" + avlTree.getRoot().height()); System.out.println("左子树高度:" + avlTree.getRoot().leftHeight()); System.out.println("右子树高度" + avlTree.getRoot().rightHeight()); System.out.println("根节点:" + avlTree.getRoot()); } }
class AVLTreeDemo{ private Node root;
public Node getRoot() { return root; }
public Node search(int value) { if (root == null) { return null; } else { return root.search(value); } }
public int delRightTreeMin(Node node) { Node target = node; while(target.left != null) { target = target.left; } delNode(target.value); return target.value; }
public void delNode(int value) { if (root == null) { return; } else { Node targetNode = search(value); if (targetNode == null) { return; } if (root.left == null && root.right == null) { root = null; return; } Node parent = searchParent(value); if (targetNode.left == null && targetNode.right == null) { if (parent.left != null && parent.left.value == value) { parent.left = null; } else if (parent.right != null && parent.right.value == value) { parent.right = null; } } else if (targetNode.left != null && targetNode.right != null) { int i = delRightTreeMin(targetNode.right); targetNode.value = i; } else { if (targetNode.left != null) { if (parent != null) { if (parent.left.value == value) { parent.left = targetNode.left; } else { parent.right = targetNode.right; } } else { root = targetNode.left; } } else { if (parent != null) { if (parent.left.value == value) { parent.left = targetNode.right; } else if (parent.right.value == value) { parent.right = targetNode.right; } } else { root = targetNode.right; } } } } }
public Node searchParent(int value) { if (root == null) { return null; } else { return root.searchParent(value); } }
public void add(Node node) { if (root == null) { root = node; } else { root.add(node); } }
public void infixOrder() { if (root != null) { root.infixOrder(); } else { System.out.println(""); } } }
class Node { int value; Node left; Node right;
public Node(int value) { this.value = value; }
public int leftHeight() { if (left == null) { return 0; } return left.height(); }
public int rightHeight() { if (right == null) { return 0; } return right.height(); }
public int height() { return Math.max(left == null ? 0 : left.height(), right == null ? 0 : right.height()) + 1; }
@Override public String toString() { return "Node{" + "value=" + value + '}'; }
public Node search(int value) { if (value == this.value) { return this; } else if (value < this.value) { if (this.left == null) { return null; } return this.left.search(value); } else { if (this.right == null) { return null; } return this.right.search(value); } }
public Node searchParent(int value) { if ((this.left != null && this.left.value == value) || (this.right != null && this.right.value == value)) { return this; } else { if (value < this.value && this.left != null) { return this.left.searchParent(value); } else if (value >= this.value && this.right != null) { return this.right.searchParent(value); } else { return null; } } }
public void add(Node node) { if (node == null) { return; } if (node.value < this.value) { if (this.left == null) { this.left = node; } else { this.left.add(node); } } else { if (this.right == null) { this.right = node; } else { this.right.add(node); } }
if(rightHeight() - leftHeight() > 1) { if(right != null && right.leftHeight() > right.rightHeight()) { right.rightRotate(); leftRotate(); } else { leftRotate(); } return ; }
if(leftHeight() - rightHeight() > 1) { if(left != null && left.rightHeight() > left.leftHeight()) { left.leftRotate(); rightRotate(); } else { rightRotate(); } } }
public void infixOrder() { if (this.left != null) { this.left.infixOrder(); } System.out.println(this); if (this.right != null) { this.right.infixOrder(); } }
private void leftRotate() { Node newNode = new Node(value); newNode.left = left; newNode.right = right.left; value = right.value; right = right.right; left = newNode; }
private void rightRotate() { Node newNode = new Node(value); newNode.right = right; newNode.left = left.right; value = left.value; left = left.left; right = newNode; }
}
|
测试
感谢
尚硅谷
以及勤劳的自己