递归–八皇后问题(Java)
博客说明
文章所涉及的资料来自互联网整理和个人总结,意在于个人学习和经验汇总,如有什么地方侵权,请联系本人删除,谢谢!
问题介绍
八皇后问题,是一个古老而著名的问题,是回溯算法的典型案例。该问题是国际西洋棋棋手马克斯·贝瑟尔于1848年提出:在8×8格的国际象棋上摆放八个皇后,使其不能互相攻击,即:任意两个皇后都不能处于同一行、同一列或同一斜线上,问有多少种摆法
问题思路
- 第一个皇后先放第一行第一列
- 第二个皇后放在第二行第一列、然后判断是否OK, 如果不OK,继续放在第二列、第三列、依次把所有列都放完,找到一个合适
- 继续第三个皇后,还是第一列、第二列……直到第8个皇后也能放在一个不冲突的位置,算是找到了一个正确解
- 当得到一个正确解时,在栈回退到上一个栈时,就会开始回溯,即将第一个皇后,放到第一列的所有正确解,全部得到.
- 然后回头继续第一个皇后放第二列,后面继续循环执行 1,2,3,4的步骤
代码思路
创建一个一维数组代替原本的二维数组,只针对列和斜线的判断
采用循环来判断在第n个皇后的不同列(i)是否冲突
使用递归来判断不同的皇后的情况
代码
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
| package question;
public class Queen { int max = 8; int[] array = new int[max]; static int count = 0; static int judgecount = 0;
public static void main(String[] args) { Queen queen = new Queen(); queen.check(0); System.out.printf("一共有%d总解法", count); System.out.println(); System.out.printf("一共有%d次判断冲突", judgecount); }
private void check(int n) { if (n == max) { print(); return; }
for (int i = 0; i < max; i++) { array[n] = i; if (judge(n)) { check(n + 1); } } } private boolean judge(int n) { judgecount++; for (int i = 0; i < n; i++) { if (array[i] == array[n] || Math.abs(n - i) == Math.abs(array[n] - array[i])) { return false; } } return true; }
private void print() { count++; for (int i = 0; i < array.length; i++) { System.out.print(array[i] + " "); } System.out.println(); } }
|
结果
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
| 0 4 7 5 2 6 1 3 0 5 7 2 6 3 1 4 0 6 3 5 7 1 4 2 0 6 4 7 1 3 5 2 1 3 5 7 2 0 6 4 1 4 6 0 2 7 5 3 1 4 6 3 0 7 5 2 1 5 0 6 3 7 2 4 1 5 7 2 0 3 6 4 1 6 2 5 7 4 0 3 1 6 4 7 0 3 5 2 1 7 5 0 2 4 6 3 2 0 6 4 7 1 3 5 2 4 1 7 0 6 3 5 2 4 1 7 5 3 6 0 2 4 6 0 3 1 7 5 2 4 7 3 0 6 1 5 2 5 1 4 7 0 6 3 2 5 1 6 0 3 7 4 2 5 1 6 4 0 7 3 2 5 3 0 7 4 6 1 2 5 3 1 7 4 6 0 2 5 7 0 3 6 4 1 2 5 7 0 4 6 1 3 2 5 7 1 3 0 6 4 2 6 1 7 4 0 3 5 2 6 1 7 5 3 0 4 2 7 3 6 0 5 1 4 3 0 4 7 1 6 2 5 3 0 4 7 5 2 6 1 3 1 4 7 5 0 2 6 3 1 6 2 5 7 0 4 3 1 6 2 5 7 4 0 3 1 6 4 0 7 5 2 3 1 7 4 6 0 2 5 3 1 7 5 0 2 4 6 3 5 0 4 1 7 2 6 3 5 7 1 6 0 2 4 3 5 7 2 0 6 4 1 3 6 0 7 4 1 5 2 3 6 2 7 1 4 0 5 3 6 4 1 5 0 2 7 3 6 4 2 0 5 7 1 3 7 0 2 5 1 6 4 3 7 0 4 6 1 5 2 3 7 4 2 0 6 1 5 4 0 3 5 7 1 6 2 4 0 7 3 1 6 2 5 4 0 7 5 2 6 1 3 4 1 3 5 7 2 0 6 4 1 3 6 2 7 5 0 4 1 5 0 6 3 7 2 4 1 7 0 3 6 2 5 4 2 0 5 7 1 3 6 4 2 0 6 1 7 5 3 4 2 7 3 6 0 5 1 4 6 0 2 7 5 3 1 4 6 0 3 1 7 5 2 4 6 1 3 7 0 2 5 4 6 1 5 2 0 3 7 4 6 1 5 2 0 7 3 4 6 3 0 2 7 5 1 4 7 3 0 2 5 1 6 4 7 3 0 6 1 5 2 5 0 4 1 7 2 6 3 5 1 6 0 2 4 7 3 5 1 6 0 3 7 4 2 5 2 0 6 4 7 1 3 5 2 0 7 3 1 6 4 5 2 0 7 4 1 3 6 5 2 4 6 0 3 1 7 5 2 4 7 0 3 1 6 5 2 6 1 3 7 0 4 5 2 6 1 7 4 0 3 5 2 6 3 0 7 1 4 5 3 0 4 7 1 6 2 5 3 1 7 4 6 0 2 5 3 6 0 2 4 1 7 5 3 6 0 7 1 4 2 5 7 1 3 0 6 4 2 6 0 2 7 5 3 1 4 6 1 3 0 7 4 2 5 6 1 5 2 0 3 7 4 6 2 0 5 7 4 1 3 6 2 7 1 4 0 5 3 6 3 1 4 7 0 2 5 6 3 1 7 5 0 2 4 6 4 2 0 5 7 1 3 7 1 3 0 6 4 2 5 7 1 4 2 0 6 3 5 7 2 0 5 1 4 6 3 7 3 0 2 5 1 6 4 一共有92总解法 一共有15720次判断冲突
|
感谢
尚硅谷
万能的网络
以及勤劳的自己